Fixed-domain Asymptotic Properties of Tapered Maximum Likelihood Estimators
نویسندگان
چکیده
When the spatial sample size is extremely large, which occurs in many environmental and ecological studies, operations on the large covariance matrix are a numerical challenge. Covariance tapering is a technique to alleviate the numerical challenges. Under the assumption that data are collected along a line in a bounded region, we investigate how the tapering affects the asymptotic efficiency of the maximum likelihood estimator (MLE) for the microergodic parameter in the Matérn covariance function by establishing the fixed-domain asymptotic distribution of the exact MLE and that of the tapered MLE. Our results imply that, under some conditions on the taper, the tapered MLE is asymptotically as efficient as the true MLE for the microergodic parameter in the Matérn model.
منابع مشابه
Estimation of Parameters for an Extended Generalized Half Logistic Distribution Based on Complete and Censored Data
This paper considers an Extended Generalized Half Logistic distribution. We derive some properties of this distribution and then we discuss estimation of the distribution parameters by the methods of moments, maximum likelihood and the new method of minimum spacing distance estimator based on complete data. Also, maximum likelihood equations for estimating the parameters based on Type-I and Typ...
متن کاملTapered Covariance: Bayesian Estimation and Asymptotics
The method of maximum tapered likelihood has been proposed as a way to quickly estimate covariance parameters for stationary Gaussian random fields. We show that under a useful asymptotic regime, maximum tapered likelihood estimators are consistent and asymptotically normal for covariance models in common use. We then formalize the notion of tapered quasi-Bayesian estimators and show that they ...
متن کاملAsymptotic Efficiencies of the MLE Based on Bivariate Record Values from Bivariate Normal Distribution
Abstract. Maximum likelihood (ML) estimation based on bivariate record data is considered as the general inference problem. Assume that the process of observing k records is repeated m times, independently. The asymptotic properties including consistency and asymptotic normality of the Maximum Likelihood (ML) estimates of parameters of the underlying distribution is then established, when m is ...
متن کاملConditional Maximum Likelihood Estimation of the First-Order Spatial Integer-Valued Autoregressive (SINAR(1,1)) Model
‎Recently a first-order Spatial Integer-valued Autoregressive‎ ‎SINAR(1,1) model was introduced to model spatial data that comes‎ ‎in counts citep{ghodsi2012}‎. ‎Some properties of this model‎ ‎have been established and the Yule-Walker estimator has been‎ ‎proposed for this model‎. ‎In this paper‎, ‎we introduce the...
متن کاملIssues in the Estimation of Mis-Specified Models of Fractionally Integrated Processes†
In this paper we quantify the impact of model mis-specification on the properties of parameter estimators applied to fractionally integrated processes. We demonstrate the asymptotic equivalence of four alternative parametric methods: frequency domain maximum likelihood, Whittle estimation, time domain maximum likelihood and conditional sum of squares. We show that all four estimators converge t...
متن کامل